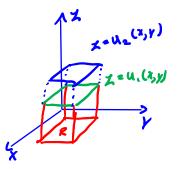
Sec 15.6 Triple Integrals

DEF: Let f(x, y, z) be a continuous function on the solid region

$$E = \{(x, y, z) : (x, y) \in \mathcal{R}, \ u_1(x, y) \le z \le u_2(x, y)\}$$

We define the triple integral of f(x, y, z) over E by:

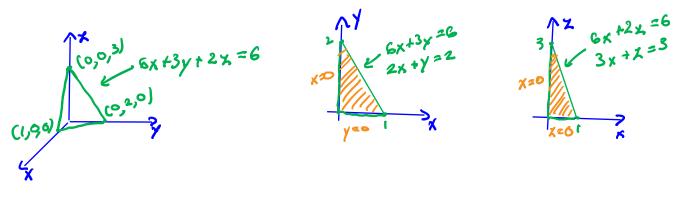
$$\iiint_E f(x,y,z) \ dV := \iint_{\mathcal{R}} \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \ dz \right] \ dA$$



Important: Due to Fubini's theorem, this triple integral can be written in 6 distinct forms.

Ex1. Let E be the solid tetrahedron bounded by the four planes x = 0, y = 0, z = 0 and 6x + 3y + 2z = 6.

(a) Draw the solid region E.



(b) Rewrite the integral
$$\iiint_E f(x, y, z) dz dy dx$$
 in the order $dy dx dz$.

$$\frac{dx dy dx}{(Bofforn Sunface : $\chi = 0$
 $\chi (Top Sunface : \chi = \frac{6-6\chi-3y}{2})$
 $\chi^{-2\chi} \int_{2}^{6-6\chi-3y} f(x, y, \chi) dz dy dx$
 $\chi^{=0} \int_{2}^{3} \int_{3}^{3-\chi} \int_{3}^{3-\chi}$$$

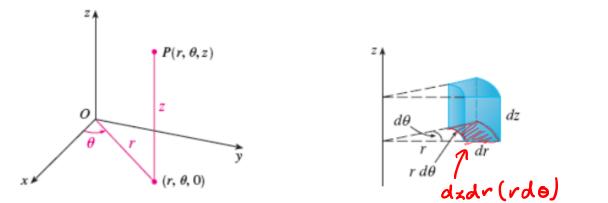
Ex2. Rewrite the following integral using the order of integration dy dz dx

What is the value of the integral?
What is the value of the integral?

$$\int_{0}^{1} \int_{-1}^{0} \int_{0}^{u^{2}} z^{2} dz dy dz.$$

$$\int_{V_{1}}^{1} \int_{V_{2}}^{1} \int_{V_{1}}^{1} \int_{V_{2}}^{1} \int$$

fidt = b-a SidA = Area at R IS LOV = Volame at **DEF:** The volume of a solid region E is defined by $V(E) := \iiint 1 \, dV$. $\iint_{R} u_{2}(x,y) dA - \iint_{R} u_{i}(x,y) dA = \iint_{R} u_{2}(x,y) - u_{i}(x,y) dA = \iint_{R} \left(\int_{R} u_{i}(x,y) dA \right) dA$ **Ex3.** A solid E in the first octant is bounded by the planes x = 0, y = 0, z = 0, z = 6 and the cylinder $y = 9 - x^2$. Which of the following integrals represents the volume of the solid E? $(3) \int_{-\infty}^{6} \int_{-\infty}^{9-x^2} \int_{-\infty}^{\sqrt{9-y}} dx \, dy \, dz$ (c) $\int_0^6 \int_0^9 \int_0^{\sqrt{9-y}} dx \, dy \, dz$ $\int_0^3 \int_0^{\sqrt{9-y}} \int_0^6 dz \, dy \, dx$ $\bigvee_{0} \int_{0}^{3} \int_{0}^{9-x^{2}} \int_{0}^{9-x^{2}-y} dz dy dx = \frac{3 \log dz}{4 \log dx} = \frac{3 \log dz}{4 \log dx}$.*=6 rsolid E $y = 9 - x^2 = x = \sqrt{9 - y}$ X dy dx X foothom surface X = 0 X foo surface x = 6 dx dy dx x { bottom sunface x=0 x { top sunface x= J9-y <-Projection outo the yx-plane projection on to the xy-plane ⁹ y² 9-x² Volume = $\int_{0}^{3} \int_{0}^{q-x^{2}} \int_{0}^{0} I dx dy dx$ Volume = 5 5 9 5 Jary Volume = 5 5 9 5 1 dx dy dx glwaps need numbers for the outer integral, no variables



Equations: $x = r \cos \theta$, $y = r \sin \theta$, z = z.

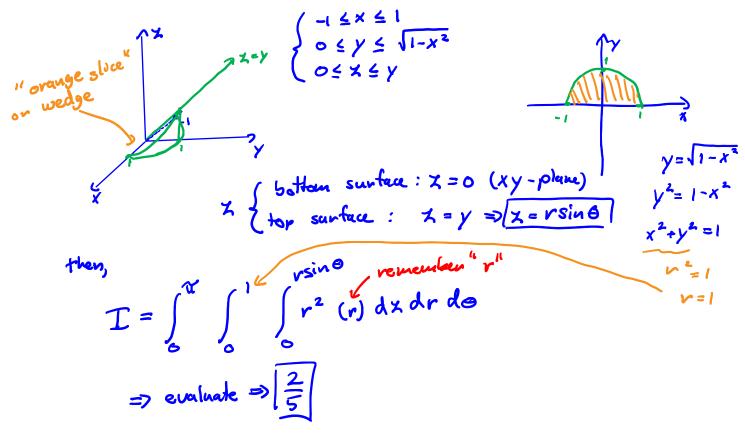
Integration formula:

$$\iiint_{E} f(x,y,z) \ dV = \iiint_{E_{r,\theta,z}} f(r\cos\theta, r\sin\theta, z) \ dz \ rdr \ d\theta$$

Ex1. Convert the integral

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{y} (x^2 + y^2) \, dz \, dy \, dx$$

to an equivalent integral in cylindrical coordinates and evaluate the result.



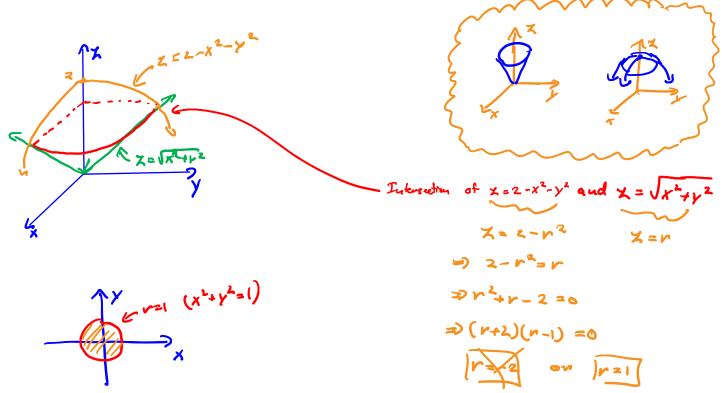
Ex2. Set up the integral for evaluating

$$\iiint_E z \ dV$$

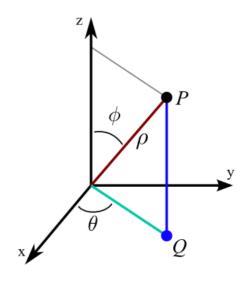
in cylindrical coordinates, where E is the circular solid cylinder whose base is the circle $x^2 + y^2 = 2y$ is the plane and whose top lies in the plane z = 4 - y. $\frac{2}{x} = \frac{x^2 + y^2 = 2y}{\sqrt{2}r^2 = 2r \sin \theta}$ Bounds for 2 { Bottom: X=0 Top : X=4-y=) [Z=4-vsin0] I= $\int_{a}^{\pi} \int_{a}^{2\sin\theta} \frac{y - r\sin\theta}{x \cdot r} \frac{dx dr d\theta}{dr d\theta}$ Scheele projection into xy-plane then,

$x^{2} = x^{2} + y^{2}, x \ge 0$

Ex3. Let *E* be the solid region bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the paraboloid $z = 2 - x^2 - y^2$. Set up a triple integral in cylindrical coordinates that gives the volume of *E*.



Sec 15.8 SPHERICAL COORDINATES



This leads us to

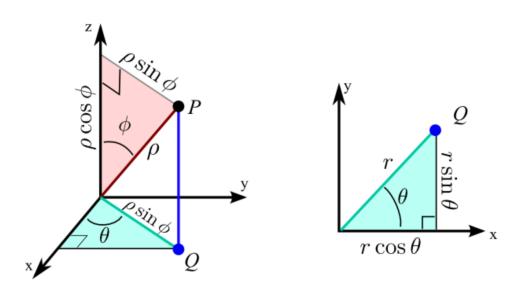
Let P be a 3-dimensional point with coordinates (x, y, z). The quantity ρ represents the distance from the point P to the origin. In cartesian coordinates:

$$\rho = (x^2 + y^2 + z^2)^{1/2}$$

The point Q represents the shadow of the point P on the xy-plane. So Q is the 2-dimensional point (x, y)and the blue segment \overline{PQ} has length equal to z. Thus

$$z = \rho \cos \phi$$

where ϕ is the angle from the positive z-axis to the red segment \overline{OP} .



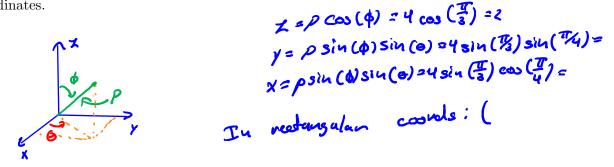
The angle θ is the angle from the positive x-axis to the green segment \overline{OQ} . So the pair (r, θ) represents the polar coordinates of the point Q. Since $r = \rho \sin \phi$ we obtain the following equations:

$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases}$$

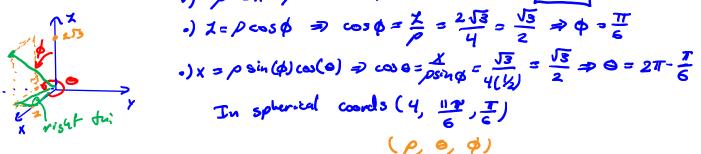
The generic bounds for θ and ϕ are $0 \le \theta \le 2\pi$ and $0 \le \phi \le \pi$, and the spherical coordinates of P are (ρ, θ, ϕ) .

(P, Θ, ϕ)

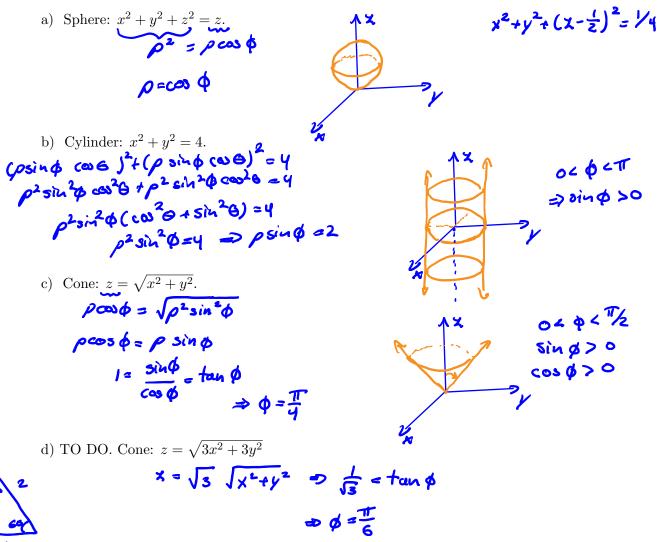
Ex1 The point $(4, \pi/4, \pi/3)$ is given in spherical coordinates. Plot the point and find its rectangular coordinates.



Ex2 The point $(\sqrt{3}, -1, 2\sqrt{3})$ is given in rectangular coordinates. Find spherical coordinates for this point. •) $\rho^2 = \chi^2 + \chi^2 + \chi^2 = \rho^2 = 3 + 1 + 12 = \rho^2 = 4$



Ex3 Write in spherical coordinates the equations of the following surfaces:

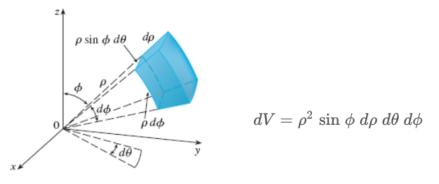


Triple Integrals in Spherical Coordinates

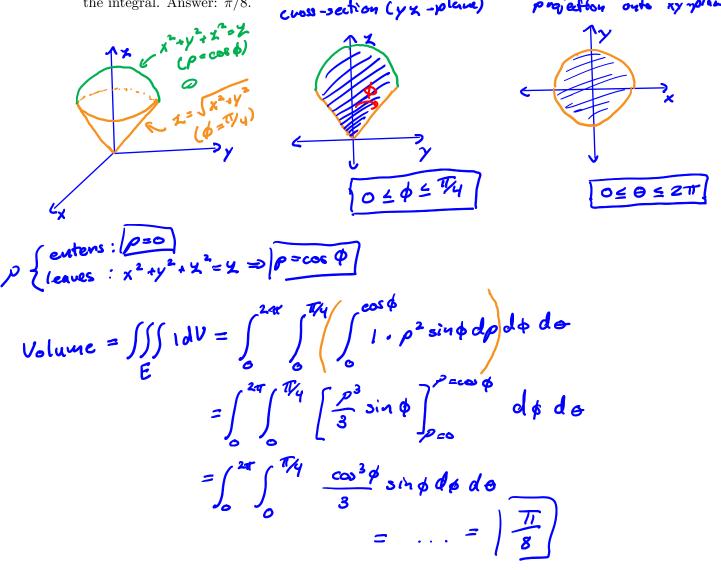
Integration formula:

$$\iiint_E f(x, y, z) \ dV = \iiint_{E_{\rho, \phi, \theta}} \tilde{f}(\rho, \phi, \theta) \ \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta$$

where $\tilde{f}(\rho, \phi, \theta) = f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi).$



Ex1. Set up a triple integral in spherical coordinates to compute the volume of the solid region bounded above by the sphere $x^2 + y^2 + z^2 = z$ and below by the cone $z = \sqrt{x^2 + y^2}$. Also, evaluate the integral. Answer: $\pi/8$.



and above the cone
$$\phi = \pi/3$$
. Evaluate

$$\iint_{E} xyz \, dV$$

$$\iint_{E} xyz \, dV$$

$$\int_{e} q$$

Ex2. Let *E* be the solid region in the first octant that lies between the spheres $\rho = 2$ and $\rho = 4$ and above the cone $\phi = \pi/3$. Evaluate

Application of Triple Integrals

3D-Mass, Moments and Center of Mass

All the applications of double integrals can be immediately extended to triple integrals. For example, if the density function of a solid object that occupies the region E is $\delta(x, y, z)$ in units of mass per unit volume, at any given point (x, y, z), then its **mass** is

$$m = \iiint_E \delta(x, y, z) \ dV$$

and its **moment** about the three coordinate planes are

$$M_{yz} = \iiint_E x \cdot \delta(x, y, z) \, dV, \qquad M_{xz} = \iiint_E y \cdot \delta(x, y, z) \, dV$$
$$M_{xy} = \iiint_E z \cdot \delta(x, y, z) \, dV$$

The center of mass is located at the point $(\bar{x}, \bar{y}, \bar{z})$ where

$$\bar{x} = \frac{M_{yz}}{m}, \qquad \bar{y} = \frac{M_{xz}}{m}, \qquad \bar{z} = \frac{M_{xy}}{m}$$

Ex3. Find the center of mass of the upper solid hemisphere of radius a centered at the origin if the density at any point is proportional to $\frac{1}{2}$ its distance from the base.

